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Content and cluster analysis: assessing
representational similarity in neural
systems

AARRE LLAAKSO & GARRISON COTTRELL

ABSTRACT If connectionism 1is to be an adequate theory of mind, we must have a theory of
representation for neural networks that allows for individual differences in weighting and architecture
while preserving sameness, or at least similariry, of content. In this paper we propose a procedure for
measuring sameness of content of neural representarions. We argue that the correct way to compare
neural representations is through analysis of the distances between neural activations, and we present
a method for doing so. We then use the technique to demonstrate empirically that different artificial
neural networks trained by backpropagation on the same categorization task, even with different
representational encodings of the input patterns and different numbers of hidden units, reach states in
which representations at the hidden units are similar. We discuss how this work provides a reburtal
to Fodor and Lepore’s critique of Paul Churchland’s state space semantics.

Introduction

Since Putnam’s papers on Turing-machine functionalism in the 1960s, computa-
tional functionalism has been the dominant theory of mind. On this view, mental
states are tokenings of morphologically identifiable “symbols” at an abstract
(“functional”) level of description. The meaning, or “content,” of a mental state is
determined by the symbols tokened in that state, the rules governing the tokenings
of symbols in the system, and the relations between the symbols tokened inside the
system and objects outside of the system. This is the fundamental view underlying
computational models of cognition, i.e. Good Old Fashioned Artificial Intelligence
(GOFAI) models. In keeping with convention, we will refer to it as the “Classical”
view.

The advantage of the Classical view over the various “identity” theories of mind
that proliferated before Putnam’s work is that it allows for the multiple reliability of
mental states. On identity theories, mental states are identical with the physical
substrates in which they are realized. Therefore, identity theories rule out the
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possibility of the same mental state being realized in systems composed of different
substances. However, many of us have the strong intuition that machines could, at
least conceivably, think the same kinds of thoughts that we do. By individuating
mental states at a functional level, rather than a physical level, the Classical view
makes room for this intuition: different systems, perhaps even systems composed of
such different substances as carbon and silicon, could realize the same functional
description and so be in the same mental state.

While Classical models of cognition performed well at abstract, logical tasks,
they tended to do less well at more primitive sensory—motor tasks. Classical models
were often too sensitive to small variations in starting conditions, or to the environ-
ment in which they operated. They also tended to degrade ungracefully in the face
of minor damage.

The rebirth of connectionism, and especially the development of the backprop-
agation learning algorithm in the 1980s, seemed to offer an alternative. Connection-
ist models were robust in the face of damage and minor changes in initial conditions
or environment, and excelled at the kinds of sensory—motor tasks that had been the
bane of Classical models. Paul Churchland soon proposed that connectionism was
not only a new kind of cognitive modeling but also a new theory of the mind. On
Churchland’s view, mental states consist not in the tokening of symbols but in the
activation of hidden units in a connectionist network. Churchland writes, “the brain
represents various aspects of reality by a position in a suitable state space” (1986,
p. 78). He makes the same point in another work:

fleeting facts get represented by a fleeting configuration of activation levels
in the brain’s many neurons ... The overall pattern of neuronal activation
levels at any given instant constitutes the brain’s portrait of its local
situation here and now. (Churchland, 1995, p. 6)

The position-in-activation space occupies the same role in the connectionist theory
of mind as the tokening of symbols does in the Classical view. On the Classical view,
an occurrent representational state just is the tokening of certain symbols. On the
connectionist theory of mind, an occurrent mental state just is the activation of
certain nodes.

The content of the qualitative experience of seeing a particular color, for
example, is a specific pattern of neural activation:

a visual sensation of any specific color is literally identical with a specific
triplet of spiking frequencies in some triune brain system. (Churchland,
1986, p. 104)

Any humanly perceivable color ... will be a distinct pattern of activations
across ... three types of downstream opponent process neurons. (Church-
land, 1995, p. 25)

One of the notable virtues of Churchland’s pattern-of-activations theory is that it
explains the introspective (and psychophysical) datum that qualitative experiences
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within perceptual modalities exhibit robust similarity relations. As Churchland
writes, if the pattern of activations theory is true:

then the similarity of two color sensations emerges as just the proximity of
their relative state-space positions. (Churchland, 1986, p. 104)

Coding each color with a unique triplet of neural activation levels provides
not only for phenomenological similarities ... but for other phenomenolog-
ical relations as well. Intuitively, orange is between yellow and red, as pink
is between white and red. And that is exactly how they are positioned
within the coding space. (Churchland, 1995, pp. 25-26)

Color categorization, of course, lends itself to network modeling. LLanguage imposes
categories on many properties of the qualitative states that comprise our conscious-
ness. We categorize colors, for example, by chroma (red, orange, yellow, green, blue,
or violet), by brightness (light or dark), by saturation (deep or pale), and in other
ways. The qualities of our awareness, however, transcend the categories we use to
communicate their properties. We perceive sets of relative similarity relations be-
tween our qualitative states, both within and across the categories we use to describe
them. For example, for any three reds we can distinguish, we will be able to say
which of two is more like the third, even if we cannot describe the difference
precisely. Given the similarities we perceive among our qualitative states, we can
order them along the dimensions of the properties we perceive as ordered. Where
the dimensions are orthogonal, we can construct spaces that map our qualitative
states into points in a low dimensional space, points that reflect by relative proximity
the similarities we perceive between the qualitative states. The problem of construct-
ing such spaces is the ordering problem, the problem of constructing “for each
category of qualia, a map that will assign to each quale in the category a unique
position and that will represent relative likeness of qualia by relative nearness in
position” (Goodman, 1951, pp. 217-218).

The field of psychophysics has for the past 150 years taken the solution of the
ordering problem as its fundamental task. It has proceeded by eliciting from human
subjects large numbers of judgments of the relative similarities between stimuli in
various qualitative modalities, and mapping these similarity judgments into spaces
using the techniques of multidimensional scaling. The procedure has been fruitful.
For example, it has given rise to the CIE uniform color space specification (Anony-
mous, 1976a; Wyszecki & Stiles, 1982), which maps human color similarity judg-
ments into a three-dimensional Euclidean space such that human judgments of
similarity between color stimuli correspond as closely as possible to similarities in the
color space.

As a result of the successful solution of the ordering problem for many domains
of qualitative experience, psychophysics has generated an enormous set of data on
the similarity structure of qualitative experiences. This point has been made before.
Austen Clark writes, for example, that “there is no need for a new discipline of
‘objective phenomenology’—of objective characterization of the modes of appear-
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ance of the world—for psychophysics already is that discipline” (Clark, 1985a,
p. 505). As Clark points out:

qualia are ... those properties [of sensations] which enable one to discern
similarities and differences: they engage discriminations. The way in which
qualia have been thought to do this is isomorphic to the way critical
properties engage an internal discriminal process. Items identically en-
coded yield qualitatively identical presentations, and differences at that
stage occasion differences in qualia. In short, qualitative content can be
identified with those properties of encodings which engage the discriminal
process. (Clark, 1985b, p. 392)

Hence, we should expect the structure of qualitative content to be reflected in the
structure of neural representations at various stages of sensory processing. Qualita-
tive experiences, for all their touchy-feeliness, are contentful states. While the
contents of our qualitative experiences transcend our conceptualizations of them,
the experiences are nevertheless contentful. One of the virtues of connectionism is
that it accounts not only for the conceptual aspects of qualitative content, but also,
and equally naturally, for their nonconceptual aspects—the subtle similarities and
other relations among them for which we have no names or ready concepts but
which we are nevertheless capable of distinguishing when confronted with or asked
about them.

Although some philosophers might be resistant to the idea of associating
content with qualitative state, there is no reason to suggest that the qualitative
contents on which Churchland bases his examples are not contentful in the fullest
sense of the word. As Wittgenstein pointed out, and as linguists have voluminously
documented, the contents of many if not all of our concepts are rather more like
qualitative contents than many philosophers have acknowledged. Psychophysics—
objective phenomenology—has not yet got around to all of our concepts, but the
work has only just begun.

However, in contrast with Clark, we believe that items need not be identically
encoded in order to yield qualitatively identical presentations. Rather, we believe
that items with the same relative positions in state space will yield qualitatively
identical presentations. Small changes in the way that a particular item is encoded,
provided that they do not change its position relative to the encodings of other items,
will not, we claim, change its qualitative presentation.

This is, we feel, also a problem with Churchland’s strict identification of
content with a specific position in state space. It is well known that networks with
different numbers of hidden units can solve the same problem. It is at least plausible
that what is represented at the hidden layers of two such networks is the same. (It
is only that the information is distributed over more nodes in one network than in
the other.) It is also a fact that two different human beings can have the same belief,
even though it strikes us as highly unlikely that such beliefs are ever represented by
exactly the same levels of activation over exactly the same numbers of neurons in
two people’s brains. On the position-in-activation-space view of occurrent representa-
tion that Churchland advocates, the criterion for representations in two different
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individuals having the same content is clear: they must have exactly the same levels
of activation over exactly the same numbers of neurons. Even if the representations
are not identical, their similarity is easy to compute, for example, by taking the dot
products of the respective activation vectors.

There is a problem though: dot products (and other standard measures of
association like correlation) are only defined for vectors of equal length. However,
different numbers of units can carry the same information. (Connectionist nets can
solve the same problem with different numbers of hidden units, and human beings
can hold the same beliefs despite presumable differences in the numbers of neurons
in their respective brains.) Therefore, the position-in-activation-space view leaves us
at a loss as to how to determine when two systems represent the same information
with a given pattern of activation. We cannot take the dot product, compute
correlation, or use any of the other standard tools for determining similarity between
two vectors, because we might be dealing with vectors of different lengths. There is
no corresponding problem for the Classical view, because an occurrent mental state
on the Classical view is just the tokening of certain symbols, and two individuals
(with sufficiently powerful architectures) can token the same symbols regardless of
how many transistors, or whatever, they have.

The same problem arises when we consider latent representations. On the
Classical view, latent information is represented by the set of rules that govern
the manipulation and tokening of symbols. Classical systems of many different sorts
can embody the same sets of rules. It is tempting to identify the representation of
latent information in a connectionist network with its position-in-weight space,
i.e. the particular set of weights that determines which of its units will be activated
in a given circumstance. Churchland espoused this view at one time: “An individ-
ual’s overall theory-of-the-world ... is a specific point in that individual’s synaptic
weight space ... a configuration of connection weights” (1989b, p. 177).

This position-in-weight-space view of latent information in connectionist net-
works faces the same sort of problem as did the position-in-activation-space view of
occurrent information. Networks with different weights may in fact react very
similarly to their inputs. Differences in certain weights may be compensated for by
differences in other weights in such a way that differently weighted networks exhibit
similar, if not identical, responses to the same inputs. Churchland himself acknowl-
edged this problem, putting the point in terms of the partitioning of activation vector
spaces: “differently weighted systems can produce the same, or at least roughly the
same, partitions on their activation-vector spaces” (1989b, p. 177). (A partitioning
of activation vector space is a particular mapping between input activations and
hidden unit activations.) The point is not limited to artificial neural networks.
Different people may know the same things even though it would be highly
surprising to find that even small areas of their brains were wired in exactly the same
ways. Because we want our theory of mind to allow for the fact that different people,
who presumably are not wired identically, can share knowledge, the position-in-
weight-space view is unacceptable. It suffers from the same sort of chauvinism the
position-in-activation-space conception of occurrent representation does: individu-
ating representation states too finely makes it impossible for subtly different individ-
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uals to be in the same representational state. If connectionism is to be an adequate
theory of mind, we must have a theory of representation for neural networks that
allows for individual differences in weighting and architecture while preserving
sameness of content.

An evident solution would be to identify latent information not with specific
patterns of connection strengths, but rather with characteristic groupings of acti-
vation patterns, the partitions of activation space that the specific connection
weights determine. The way networks partition their hidden layer activation spaces
is a better criterion for evaluating their semantic similarity than is their exact
position-in-weight space. The partitioning view allows different individuals to rep-
resent the same latent information without having identical networks. Churchland
also considered this possibility:

we might try to abstract from the idiosyncratic details of a system’s
connection weights, and identify its global theory directly with the set of
partitions they produce within its activation-vector space. This would allow
for differently weighted systems to have the same theory. (Churchland,
1989b, p. 177)

As soon as Churchland made this suggestion, however, he dismissed it on the
grounds that it would preclude lawful explanations of learning:

While differently weighted systems can embody the same partitions and
thus display the same output performance on any given input, they will still
learn quite differently in the face of a protracted sequence of new and
problematic inputs ... because the learning algorithm that drives the system
to new points in weight space does not care about the relatively global
partitions that have been made in activation space. All it cares about are the
individual weights and how they relate to apprehended error. The laws of
cognitive evolution, therefore, do not operate primarily at the level of the
partitions ... rather, they operate at the level of the weights. Accordingly, if
we want our “unit of cognition” to figure in the laws of cognitive develop-
ment, the point in weight space seems the wiser choice of unit. We need
only concede that different global theories can occasionally produce
identical short-term behavior. (Churchland, 1989b, pp. 177-178)

It is not obvious to us that the “unit of cognitive significance” really must figure in
the laws of cognitive development. The “unit of cognitive significance” is pre-
sumably that feature in terms of which we give our explanations of how behaviors
happen. The laws of cognitive development, on the other hand, are explanations of
how behaviors change. As long as the laws of cognitive development adequately
explain changes in behavior, we see no reason why they must do so in ways that refer
to the mechanisms of behavior themselves. Admittedly, we do not now have rigorous
theories of how the parntions of neural networks will change given new inputs, while
we do have algorithms such as backpropagation for determining how the weights in
artificial networks skould change in order to learn particular tasks. In the case of
artificial networks, though, the algorithms themselves give us perfectly good expla-
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nations of how learning changes the weights. While the mechanisms of learning in
biological neural systems are not yet completely understood, we expect that neuro-
science will eventually discover the laws that govern the ways synaptic connections
change in the face of new experience. Changes in the weights determine changes in
the partitions. Presumably, therefore, laws could be developed that would explain
changes in partitions in terms of learning. At least, we do not see any reason in
principle why this is not so.

Churchland (1989a) also seems to have adopted the view that the partitions are
the fundamental unit of cognitive significance, however important the weights may
be in the explanation of learning:

While the weights are of essential importance for understanding long-term
learning and fundamental conceptual change, the partitions across the
activation space, and the prototypical hot-spots they harbor, are much
more useful in reckoning the cognitive and behavioral similarities across
individuals in the short term. People react to the world in similar ways not
because their underlying weight configurations are closely similar on a
synapse-by-synapse comparison, but because their activation spaces are
similarly partitioned. (p. 234)

This latter view seems to have stuck. In his most recent book, Churchland asserts
that:

the general and lasting features of the external world are represented in the
brain by relatively lasting configurations of synaptic connections. (1995,

p. 5).

This might suggest that Churchland has reverted to his earlier position-in-weight-
space account of knowledge. However, he also writes that the cluster diagram of
NETTalk’s hidden layer activations “is the conceptual framework that learning has
produced within NETTalk” and that it “displays the system of interrelated cate-
gories or concepts whose activation is responsible for NETTalk’s sophisticated
input—output behavior” (1995, p. 90). Thus, Churchland’s considered view seems
to be that knowledge corresponds to a partitioning of activation space, not to a point
in weight space.

The main consideration in favor of the parntioning-of-activation-space concep-
tion of latent information in networks is the desideratum that different individuals be
able to share mental states. It is a fact that many different human beings—at least
some of whom presumably have differently weighted connections between neurons
in their respective brains—often share beliefs. Taking category structure to be
identical to the weighting of network connections would force us to say that two
individuals whose brains were wired even slightly differently had different categories,
even if their categorization behaviors were identical. This is a very good reason for
preferring a partitioning-of-activation-space view of latent representation in neural
networks to a position-in-weight-space view: it allows us to account for the represen-
tational similarities between individuals who have different weights and architec-
tures. The position-in-weight-space view, on the other hand, relegates the pervasive
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correspondence between the similarity judgments of different individuals to mere
accident. We therefore believe that we must reject the position-in-weight-space view
of neural representation (where latent representations are identical if and only if they
are implemented in neural systems with identical connection strengths). Instead, we
favor a partitioning-of-activation-space theory of neural representation (where latent
representations are similar insofar as they partition the activation space in similar
ways). To meet Churchland’s objection about the lawfulness of cognitive develop-
ment, we must begin to formulate laws of cognitive development that operate over
partitions rather than activations, but that is a project for another paper.

Adopting the partitioning-of-activation-space view about latent information also
suggests a complementary solution for the corresponding problem with the position-
in-activation-space view of occurrent information. Rather than associating content
with absolute position-in-activation space, we advocate associating content with
relative position in the partitioning of activation space. On our view, occurrent
representations in different neural networks should be compared not by the absolute
positions of the representations in the networks’ activation spaces, but rather by each
representation’s location relative to other possible activations in the same network.

There is, however, a significant problem with the partitioning-of-activation-
space view: how do we assess when two networks with differently weighted connec-
tions or different numbers of hidden units partition their activation space the same
way? Taking the partitioning of activation space to be the representational vehicle
requires that we find a way of comparing partitionings. On the position-in-weight-
space view, it was easy (theoretically, anyway) to determine whether two different
individuals represented their experiences the same way: we simply determined
whether they had the same connection strengths between their neural units. Things
are not so easy on the partitioning-of-activation-space view.

In order to make the partitioning-of-activation-space theory of neural represen-
tation viable, we must solve this problem. The position-in-weight-space view has an
easily computable measure of representational similarity between two individuals:
two individuals’ neural representations are similar in proportion to the correlation
between the connection strengths (or synaptic weights) between their neural units.
The association between two vectors of equal dimensions is easy to compute using
vector inner products. However, because the inner product between two vectors is
defined only if the vectors have the same number of components, the technique of
computing simple correlation between representations is not applicable to the
partitioning-of-activation-space model of representation. The partitioning-of-
activation-space model is designed specifically to account for similarities across
individuals with different neural architectures, but it seems to leave us with no way
of measuring those similarities.

Fodor and Lepore (1996a,b) have voiced precisely this objection in response to
Churchland’s theory of state space semantics. In short, the argument is that a
connectionist theory of mind, because of the way it individuates mental states,
cannot give a satisfactory account of different individuals being in the same mental
state. Fodor and Lepore argue that the viability of Churchland’s view of state space
representation depends on his having a robust criterion for content identity, a



CONTENT AND CLUSTER ANALYSIS 55

project whose prospects they view as dim. They raise the same problem that we have
about the identity of content across individuals with different architectures:

If the paths to a node are collectively constitutive of the identity of the
node ... then only identical networks can token nodes of the same type.
Identity of networks is thus a sufficient condition for identity of content,
but this sufficient condition isn’t robust; it will never be satisfied in
practice. (Fodor & Lepore, 1996a, p. 147)

The condition will never be satisfied in practice because different individuals are
bound to have at least slightly different connections among nodes. Any theory of
mind must have a substantive notion of inter-individual content similarity that is not
dependent on a strictly psychophysical mode of explanation. A connectionist expla-
nation, based on neurophysiological measurements, would be in a position to give
precisely such an explanation only if connectionism had an adequate account of
inter-individual sameness (and hence difference) of content.

As we have seen, there are lots of reasons why connectionism needs a robust
criterion of inter-individual content similarity. Because the position-in-activation-
space and position-in-weight-space views are inadequate for the task, we have
argued that two individuals’ neural representations are similar in proportion to the
correspondence between the partitionings each produces over the set of possible
inputs. But how can we evaluate that correspondence?

The units in an artificial neural network (neurons in a biological network) can be
seen as determining dimensions in an abstract space. The vector of activations over
the units at a particular time is a point in this space. Hence, the network’s represen-
tation of every object is a point in activation space. Objects that the network
represents as alike will be nearby in this space (fall into the same partition), whereas
objects that the network represents as different will be distant (in different partitions).
Groups of similar objects form clusters in the space. For example, a network’s
representations of trees might form one cluster and its representation of animals might
form another. The problem of measuring the representational similarity of two
different networks is the problem of measuring the similarity of the clusters in one
network’s activation space with the clusters in the other network’s activation space.

The way a single network partitions its activation space may be visualized using
cluster analysis. In the application of cluster analysis to networks, patterns of
activation at the hidden units are measured for each input, and then the patterns are
progressively matched with each other according to their proximity. The result is a
dendogram, or tree structure, which graphically displays the relative proximities of
the input patterns as they are represented at the hidden layer. In the first application
of cluster analysis to representation in artificial neural networks, Sejnowski and
Rosenberg (1987) showed that similarities among hidden layer representations in
their NETTalk network matched the phonological similarities that humans perceive
in spoken phonemes. For example, hard “c” and “k” sounds were grouped together,
and at the highest level, consonants were grouped together, as were vowels.

We can use cluster analysis to visualize the partitioning of activation space
within a single network. However, cluster analysis produces a dendogram, and we
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know of no accepted way to compare different dendograms. If we think, for
example, of the complex dendogram representing the clustering of inputs in
NETTalk, it is unclear how we could measure the similarity of that tree with a
different one. Furthermore, there are myriad ways to cluster data, with differing
results. Thus, “cluster analysis” itself is an ambiguous term at best.

A modest proposal

We have argued that having a method for comparing the relative positions of
concepts in one state space to the relative positions of concepts in another state
space is critical for state space semantics. The method we propose here works well
for neural networks, and may be generalizable to animals and robots. The basic idea
is to collect the activation patterns evoked by inputs and compute all possible
distances between these representations. The distances between representations
capture the structure of representational space. We then compute the correlation
between the distances between representations in one state space and the distances
between representations in the other state space. This procedure can be used to
measure the similarity between any two neural representations (be they from natural
or artificial networks, from input, output, or hidden unit representations, from the
same or different networks, with the same or different numbers of units).

Walking through the application of our measure to a simple problem is the
easiest way to explain it. Suppose we consider the representation of three things,
“A,” “B,” and “C,” in a network with one hidden unit. Say the network represents
these things with the following levels of activation:

A=<0>,B=<50>,C=<100>

We will call such a representation a vector coding. In this case, the vector has only one
dimension. The network’s representations fall on a line:

3L

Suppose also that another network, this one with two hidden units, represents the
same three things with the following vector coding:

A=<0,0>, B=<30,30>, C=<80,0>

In this case, the points form a triangle in two-dimensional space:

@), >

Our problem is to measure the similarity of these two shapes.
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TaBLE 1. Comparison of distances between points in two different
vector encodings

Distances between representations

1. Unit network 2. Unit network
A B C A B C
A 0 50 100 0 42 80
B 50 0 50 42 0 58
C 100 50 0 80 58 0

We start by taking distances [1] in each network between each of its represen-
tations and each other, giving the two symmetric matrices seen in Table 1.

Taking distances between the representations has two advantages. First, it
achieves invariance to global translation, rotation and mirror inversion, since for any
set of points in z-dimensional space, the set of distances between them will remain
constant through uniform translation, rotation, or inversion. Second, taking dis-
tances between the representations allows us to use standard mathematical measures
of similarity to compare the representations. Since the distance matrices for both
networks are symmetric and we are measuring the representations of the same
number of things in each network, the distance matrices each have n(n-1)/2 unique
elements, where n is the number of representations being compared. If we lay the
unique elements for each network out in a vector, we have two vectors of length
n(n-1)/2. In our toy case:

<50,100,50 >
<42,80,58 >

We then compute the correlation (Pearson’s r) between these two vectors.
(Correlation measures the extent to which the values in one data set can be
predicted from values in another data set. Values close to O indicate that it is
impossible to predict the values in one set from the values in the other, whereas
values near 1 indicate that one set can be predicted almost perfectly from the other.)
In this toy example, the correlation is 0.91, suggesting that they are similar struc-
tures. This corresponds to our intuition, in that both spaces place B “between” A
and C. (In realistic cases, of course, we would want to compare many more
observations.) Using correlation also achieves a third criterion that we believe should
be met by any solution to this problem, namely, scale invariance, because correlation
is insensitive to the magnitude of the vectors being compared. In summary, our
measure evaluates to 1 for two individuals who have identical representations
(modulo differences in global scale, rotation, translation and inversion), to — 1 for
individuals whose representations are maximally dissimilar (anticorrelated), and to O
for individuals whose representations are completely uncorrelated. This is the
essence of our solution to Fodor and Lepore’s challenge—by computing the simi-
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larity of the distances between points in two representational spaces, we provide state
space semantics with a criterion for semantic similarity while eliminating the need to
match the dimensions of the two spaces.

Our technique has a number of desirable properties as a measure of representa-
tional similarity. Because it compares distances between representations, it allows
for comparisons between networks with different numbers of units, and it is
insensitive to differences in global rotation, translation and inversion. Because it uses
correlation (which is not sensitive to magnitude) as a measure of association, it is
also insensitive to differences in global scaling. Global differences of scale merely
reflect uniform differences in activation levels. If one network has activations that
range between O and 1 and another network has activations that range between 0
and 100, the scale of their representations will be different. Nevertheless, if the skapes
of their representations are similar, we would want to judge them as similar. Similar
arguments hold for translation and rotation: translational differences correspond to
differences in which part of the range of activation the neurons use the most;
rotational and inversion differences correspond to differences in which neurons are
used to represent which factors in the representation.

In the following, we present two experiments that demonstrate the use of
our measure on neural networks that learn to classify colors. In the first experiment,
we show that neural networks with different “sensory apparati” learn internal
representations that are quite similar by our measure, and that neural networks with
the same sensors learn nearly identical representations. In the second experiment,
we show that even neural networks with different numbers of hidden units (in this
case, an excessive number) also learn nearly identical representations by our
measure.

Experiment 1

As an example of how our technique for measuring similarities in network represen-
tations can be used, we chose to model color categorization in artificial neural
networks using a variety of input encodings. The different encodings might be
thought of as ways in which the sensory systems of different “species” encode the
impact of light at various frequencies on their bodies.

The key assumption is that all of the networks agree about the category labels
(i.e. they all agree that a particular stimulus is “red”). This corresponds to agree-
ment within human subjects about color labels, which is presumably “trained.” We
considered two questions. First, we were interested in the degree of agreement
within a species. This addresses the question of how much you and I might agree in
the content of our representations, even though we may have different synaptic
connectivity and hence different actual patterns of activity (the issue of different
numbers of neurons is addressed in the next section). Second, we were interested in
the degree of agreement between species. This addresses the question of how similar
the content of your representations can be to the content of my representations
when at least one aspect of our “bodies”—the sensory apparatus—differs between
us, even though we use the same learning mechanism and number of internal units.
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Procedure

We started with a database of reflectance spectra of color samples measured by the
University of Kuopio, Finland (Anonymous, 1995). The database consists of 40
files, each one containing data from a particular page in the Mumnsell book of color:
matte finish collecion (Anonymous, 1976b). The database contains data on 10 colors:
red, yellow-red, yellow, green—yellow, green, blue—green, blue, purple-blue, and
purple. For each color, there are four files, each containing data on the color at
Munsell hue values of 2.5, 5, 7.5 and 10, respectively.

Each file consists of about 30 spectra. Each spectrum is represented by
three lines in the file. The first line for each spectrum is a label of the spectrum
based on the Munsell notation. The second line for each spectrum consists of
61 elements of raw data obtained from the output of a spectrophotometer,
measured from 400 nm to 700 nm, at 5 nm intervals, represented as integers
between 0 and 4095. (Some values were larger than 4095 but should, according to
the Kuopio specification, be corrected to 4095.) Because the spectra were measured
from 400 nm to 700 nm at 5 nm intervals, each spectrum could be considered a
61-dimensional vector, of which the first component represents the reflectance
intensity of a color chip at the wavelength 400 nm, the second at 405 nm, and
SO on.

To generate our data set from the Kuopio set, we ignored the data for
the intermediate colors yellow—red, green—yellow, blue—green, and purple—blue
and used only the data on five colors: red, yellow, green, blue, and purple. The
data had approximately the same numbers of patterns for each color for a total
of 627 patterns. To make network training possible, we replaced the Munsell
labels with the binary suffixes shown in Table 2 to serve as output patterns over five
units.

To correct the errors reported in the specification of the original data set, we
replaced all values greater than 4095 with 4095. To prepare for encoding the
input patterns with schemes that required large numbers of units for each
element, we then scaled the 0-4095 values to 0-255 values and removed all
but every fifth field from the Kuopio input patterns, resulting in patterns with
12 rather than 61 eclements each. This formed the complete data set for our
purposes.

TaBLE 2. Target output patterns
for the five color categories

Color Pattern
Red 10000
Yellow 01000
Green 00100
Blue 00010

Purple 00001
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From this base data set, we created four different encodings of the input
patterns to be used in training the networks:

e The binary encoding was formed by representing the 0—-255 integer inputs as
8-bit binary numbers. Thus, each pattern had 96 (=12 X 8) input elements in
the binary encoding, each element valued either O or 1.

e The real encoding was formed by scaling the 0-255 integer inputs to decimal
representations between 0 and 1. Thus, each pattern had 12 input elements in
the real encoding, one for each of the elements in the integer data set, each
element a rational number between 0 and 1.

e The gaussian encoding was formed by dividing the interval between 0 and 255
into quarters, and using five units to represent the endpoints of the intervals.
A particular value was coded as a gaussian “bump” on this interval, with
a standard deviation of 32 and mean and the point to be represented
(see Tables 3 and 4).

e The sequennial encoding was formed by numbering the patterns sequentially
with three-digit decimal numbers from 001 to 627. Each three-digit number
was then represented by a single unit with activation between 0 and 1 (see
Table 5). While this might seem completely arbitrary, in fact like colors were
grouped together in the pattern file, so this representation does contain enough
information to solve the problem.

Next, we created a set of holdout data and a set of training data for each represen-
tation, by taking every sixth line for the holdout set (104 patterns) and leaving the
rest for the training set (523 patterns). Because we were not exploring generalization
in this experiment, we did not use a separate testing set.

TABLE 3. Mean value of each element in the gaussian encoding

Element 1 2 3 4 5
Value 0 63.75 127.5 191.25 255

TABLE 4. Some examples of gaussian encodings

Value Element 1 Element 2 Element 3 Element 4 Element 5
0 1 0.137462 0.000357 0 0

127 0.000380 0.141791 0.999878 0.133233 0

128 0.000335 0.133233 0.999878 0.141791 0.000380

255 0 0 0.000357 0.137462 1

TaBLE 5. Some examples of sequential encodings

Pattern number Element 1 Element 2 Element 3

1 0 0 0.1
627 0.6 0.2 0.7
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Using backpropagation, we trained three-layer networks, each with three hid-
den units, on each input encoding for a maximum of 10,000 cycles using a learning
rate of 0.25. Training was stopped before epoch 10,000 if the root mean-squared
error of the holdout patterns had not declined in as many epochs as taken to reach
the previous low. For example, if a minimum root mean-squared error was reached
after epoch 2500 and no subsequent epoch had a lower error, then training would
be stopped after epoch 5000. For each encoding, the experiment was repeated with
five networks, each starting with a different set of initial random weights. About half
of the networks stopped training before epoch 10,000. However, those networks that
trained fewer than 10,000 epochs tended to perform less well on the categorization
task. Nevertheless, most networks achieved 90% or greater accuracy on both the
training and holdout sets.

Using the best learned weights from each network, we computed the activations
at the hidden nodes for each network on each input pattern, thereby obtaining each
network’s internal representation of the input patterns at its hidden layer. We then
computed the Euclidean distances between all patterns for that network. Now, to
compare two networks, we can compute the correlation between their corresponding
distances.

This technique can be applied to any level of any layered network. We can also
use it to compare the distances induced by the input patterns themselves, treated as
activation patterns, to the distances induced by another input encoding. In this way,
we can determine whether our input encodings are really “different” in their
structure.

Furthermore, it would be uninteresting if the hidden layer representations just
reflected a structure that already existed at the input. Thus, we used our technique
to compare the structure of each input encoding with the structure learned at the
hidden layer of networks trained on that encoding. For visualization purposes, we
also computed cluster diagrams for some layers, using standard hierarchical cluster
analysis with Euclidean distance.

Results

In order to visualize the input encoding structure, we performed a hierarchical
cluster analysis on the input vectors. Figure 1 displays a cluster diagram of a subset
of the colors for the “real” encoding. Note that this clustering appears disorganized,
and does not match very well with our qualitative perceptions of color similarities.
The colors are mixed together; for example, “Green 300” and “Blue 380” are
clustered together. The cluster diagrams for the “binary,” “gaussian” and
“sequential” encodings are similarly disordered.

We then compared the input encodings using our technique. To our surprise,
the binary, real and gaussian input encodings were highly correlated with each other
(see Fig. 2). The correlation between the real and gaussian encodings was nearly 1,
and the binary encoding had a correlation of about 0.8 with both the real and the
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Fi1G. 1. Representative clustering of input patterns in the “real” encoding (31 of 627 patterns shown).

gaussian encodings. The sequential encoding, on the other hand, was almost
completely uncorrelated with the other encodings.

The difference in correlation between the sequential input encoding and the
other input encodings is due to the fact that there is little relationship between
the order that a sequential pattern appears in the data file (which is grouped by
color), and the actual spectral properties of the light. That this should be so is
reflected in the cluster diagram of the real encoding: the real encoding is, after all,
a reasonably good representation of the filter responses, but the colors are intermin-
gled in the cluster diagram. On the other hand, since like colors appear nearby in the
sequential pattern file, the sequential numbering provides considerable information
concerning the color category. In particular, most colors that should be categorized
together are nearby in the input pattern space. There are two exceptions to this. The
first is that, because three digits were used to represent elements in the sequential
encoding, patterns differing in the ordering by as much as 100 can be as close
together as patterns differing by only one in the ordering. For example, pattern 345
(which is represented as < 0.3, 0.4, 0.5>) is as close to pattern 245 (<0.2, 0.4,
0.5>) as 245 is to 244 (<0.2, 0.4, 0.4 >). The second exception is caused by the
fact that all neighbors in the ordering are 0.1 apart in the encoding except points with
a 0 element. Each pattern with a 0 element in the sequential encoding comes right
after one with a 0.9 element (and hence the two are at least 0.9 units apart). For
example, although patterns 458, 459, and 460 are right next to each other in the
data set, the sequential representation of pattern 459 (< 0.4, 0.5, 0.9 >) is much
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F1G. 2. Hinton diagram showing correlation among input patterns. The areas of the boxes are proportional
to the values.

closer to that of pattern 458 (< 0.4, 0.5, 0.8 >) than it is to that of pattern 460
(<04, 0.6, 0.0 >).

In order to test whether the trained networks were recoding the stimulus
patterns, we compared the hidden unit structure with the input encoding structure.
We also compared the hidden unit structure of each species with the input represen-
tations of the others. None of the input representations were very highly correlated
with any of the hidden unit representations of any of the networks (see Fig. 3). In
fact, the binary networks’ hidden unit patterns were more highly correlated with the
real input patterns than with their own input patterns. Similarly, the gaussian
networks’ hidden unit patterns were more highly correlated with the real input
patterns than with their own input patterns. Although the real networks’ hidden unit
patterns were most highly correlated with the real input representation, they were
correlated almost as well with the gaussian input representation. The sequential
networks were also most highly correlated with their own input representation. All
of the networks re-encoded the data at the hidden layer, rather than simply copying
the input pattern structure to the hidden layer.

In order to assess whether the contents of the internal representations were
similar, we compared the hidden unit representations of the five networks of each
“species” with each other (10 comparisons). The diagonal of Fig. 4 shows the mean
correlation within each species. All of the within-species correlations are greater than
0.9. Thus, networks of the same species starting from different random initial
weights found similar solutions to the color categorization problem. The similarities
are also reflected in their cluster diagrams, which not only show colors grouped in
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human-like ways, but are also similar to each other. For example, Fig. 5 shows a
cluster diagram of the hidden unit activations of one of the networks trained on the
real encoding, and Fig. 6 shows the same type of diagram for a different network
trained on the same encoding. Despite the differences in initial random weights, the
cluster diagrams are similar, in that like colors are grouped together, and the same
groups are placed near one another in the diagrams.

The off-diagonals of Fig. 4 show the mean correlation between different
species’ hidden unit representations (5 X 5 =25 comparisons). All are highly corre-
lated. Correlations between hidden unit representations between the networks
trained with the binary input encoding and the networks trained on the real and
gaussian input encodings are nearly 1. For networks trained on the real encoding
and the gaussian encoding, the results are very similar. This might be expected
based on the high correlation of their input representations. More striking is the high
correlation between the sequential encoding networks’ internal representations and
the others. Although somewhat lower than the others, this is a large change from the
near-zero correlation between their input encodings. This suggests that, at least
for neural networks trained by backpropagation on this task, agreement in
categorization labels leads to agreement in internal content, regardless of sensory
coding.

Given that the correlation between networks trained on the sequential encoding
and networks trained on the other encodings is somewhat lower than the correlation
among networks trained on the other encodings, we would expect the cluster
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F1G. 5. Representative clustering of hidden unit activations in one of the five networks trained on the “real”
encoding (31 of 627 patterns shown).
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F1G. 6. Representative clustering of hidden unit activations in another of the five networks trained on the
“real” encoding (31 of 627 patterns shown).
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FiG. 7. Representative clustering of hidden unit activations in one of the five networks trained on the
“sequential” encoding (31 of 627 patterns shown).
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diagrams for networks trained on the sequential encoding to be somewhat different
from those trained on the other encodings. They are. Figure 7 shows the clustering
of hidden unit activations for one of the networks trained on the sequential
encoding. Like the clusterings of networks trained on the real encoding, the
clustering of the network trained on the sequential encoding groups like colors
together. However, there is a subtle difference between the clustering in real
networks and in sequential networks. In the clusterings on the real networks, clusters
of different colors are more distinct. For example, in Fig. 6, like colors are all
clustered together, with one exception (“Purple 420 is clustered with the reds). In
the clusterings on the sequential networks, clusters of different colors are not as
distinct. In Fig. 7, for example, some greens are clustered with yellows, while some
are clustered with blues. This is presumably a consequence of the unusual properties
of the sequential encoding.

Discussion

It is a well-known “folk theorem” of neural net lore that different networks
trained on the same problem may partition their activation spaces in similar ways.
Our results quantify this intuition. Furthermore, we have also shown that it is
possible for networks from different “species” (i.e. trained from different input
encodings) to partition their activation spaces in similar ways. Even though the
networks in our experiment were trained on different input representations, the high
correlations between the hidden layer activations of the networks show that they
partition their activation spaces in similar ways. Therefore, it is possible for the
representational states of two individuals who categorize their inputs the same way
to be similar, not only in spite of their having different connection strengths between
neurons, but even in spite of their having different “sensory systems,” i.e. input
encodings.

The results with the sequential networks are equivocal, however. Although the
correlations between hidden unit activations in sequential networks and hidden unit
activations in networks from other species are higher than the correlations between
the sequential input encoding and the other input encodings, the sequential net-
works are not as similar to the others as the others are among themselves. So we
cannot say that the internal representations that different individuals form wzll be
similar no matter how the input is encoded as long as they perform the same
categorization task. However, the representational states of two individuals who
categorize their inputs the same way can be similar despite some differences between
the way the task is presented to the individuals (the way the inputs are encoded).
Evidently, there must be a certain amount of similarity between input representa-
tions in order to achieve highly similar hidden unit representations. Also, other
differences may be significant. For example, in this experiment we used only
networks with three hidden units, and only a specific learning rule. More work is
needed to determine what factors most influence the relationship between hidden
unit representations in different networks.
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Experiment 2

In a second set of experiments, we varied the numbers of hidden units in the
networks, using only the real encoding and the sequential encoding. The goal was
to determine whether nets with different numbers of hidden units would develop
similar representational structures, and to test the effect of small variations in our
procedure.

Procedure

A nice feature of the two most different input encodings, the real encoding and the
sequential encoding, is that they both use a rather small number of inputs. The real
encoding requires only one input unit per element, and the sequential encoding only
three input units per pattern. Hence, in this experiment, we used all 61 of the input
elements in the original data set. Also, having discovered in the first experiment that
the networks learned the problem rather more quickly than we had expected, we
implemented a mechanism for stopping training earlier. We separated the original
data set into three sets: a training set (used for training the networks and containing
472 patterns, approximately 75% of the complete set); a holdout set (used for
deciding when to stop training and containing 93 patterns, approximately 15% of
the complete set); and a testing set (used for testing performance of the networks
and containing 62 patterns, approximately 10% of the complete set). We also
randomized the order of presentation of the patterns during each training epoch.

For each of the two input encodings (real and sequential), we trained three-
layer networks with 1-10 hidden units. Each network was trained for a minimum of
500 epochs, and training was stopped after the 500th epoch whenever the root
mean-squared error on the holdout set had not decreased in 50 epochs. We also
replicated the training regime on 10 additional networks with five hidden units each,
in order to demonstrate that the results in Experiment 1 using networks
with different initial random weights were not sensitive to our minor changes in
procedure.

Results

Figure 8 shows the performance of each network on the test set (generalization
performance). Networks with one and two hidden units failed to learn, and so will
not be considered further. Networks using the “real” encoding and three to 10
hidden units all learned the problem approximately equally well, often within 500
epochs. No network trained more than 675 epochs. Results were slightly different
for the sequential encoding. Networks with fewer than five hidden units trained on
the sequential encoding performed less well than the networks trained on the real
encoding (approximately 85% correct compared with approximately 95% correct).
The networks trained on the sequential encoding show more variation in both
percentage of classifications correct and error over time. Also, the networks trained
on the sequential encoding show a greater disparity between error on the training set
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F1G. 8. Percent correct on the test set versus number of hidden units.

and error on the holdout set (data not shown). These results are also presumably
due to the strange nature of the sequential encoding, as discussed above.

Regardless, with five or more hidden wunits, all but the last difference
disappeared. In contrast with networks with less than five hidden units, those with
five or more achieved accuracy of approximately 95% on the test set, which is better
than networks trained on the real encoding (see Fig. 8). In any case, networks
trained on the real input encoding learned hidden layer representations that were
substantially different from the input representation, but very similar to each other,
regardless of the number of hidden units in the network (see Fig. 9). Correlations
between hidden unit activations and input patterns were low, but average correla-
tions between hidden unit activations over networks with different numbers of
hidden units were very high. Likewise, networks trained on the “sequential” encod-
ing learned hidden layer representations that were substantially different from the
input representation, but more similar to each other, regardless of the number of
hidden units in the network (see Fig. 10). Correlations between hidden unit
activations and input patterns were low, although higher than they were for the
“real” encoding, but average correlations between hidden wunit activations
over networks with different numbers of hidden units trained on the “sequential”
encoding were still very high.

For networks with five hidden units, 10 replications starting from different
initial random weights confirmed that networks with different weights trained on the
same encoding found very similar solutions to the problem. Average correlation
among the 10 different networks trained on the real encoding was 0.93, and average
correlation among the 10 different networks trained on the sequential encoding was
0.93. In other words, networks with different weights trained on the same encoding
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found very similar solutions to the problem regardless of which encoding they used.
Average correlation between the hidden unit activations of the 10 five-unit networks
trained on the sequential encoding and the sequential encoding itself was 0.33.
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Average correlation between the hidden unit activations of the 10 five-unit networks
trained on the real encoding and the real encoding itself was 0.23. In other words,
the hidden unit representations, while not completely unrelated to the input
patterns, were not simply copies of the input patterns.

Discussion

We have proposed correlation over the distances between hidden unit activations as
a robust criterion of content similarity. Our simulation results show that our
criterion is robust, at least to changes in input encoding, number of connections,
and specific connection strength. However, Fodor and Lepore had originally de-
manded that a robust criterion of content idenniry was necessary. Is similarity
enough, or should we concede that connectionism cannot give an account of content
because it cannot give an account of content identity?

Fodor and Lepore offer a series of arguments against the very possibility of a
theory of content based on similarity rather than identity. The first argument is that
any criterion of state space similarity presupposes a notion of state space identity.
Thus, they write:

What Churchland has on offer is the idea that two concepts are similar
insofar as they occupy relatively similar positions in the same state space.
The question thus presents itself: when are S1 and S2 the same state space?
When, for example, is your semantic space a token of the same semantic
space type as mine? (Fodor & Lepore, 1996a, p. 152)

Formally speaking, our method can be used to compare measurements from any two
state spaces. In fact, however, in the experiments reported in this paper, we imposed
additional constraints on the state spaces we compared. The spaces were generated
by presenting identical stimuli to subjects who “spoke similar languages” (all of the
network “subjects” were trained with the same labels on input stimuli). Using
feedforward connectionist networks, it was both possible to conduct such experi-
ments and reasonable to assume that activations caused by identical stimuli were
comparable. Nevertheless, the fact that we imposed those constraints might give rise
to a number of objections, which we discuss below.

A first objection is that our technique is not applicable to biological nervous
systems because it depends on having large numbers of highly accurate, simulta-
neous single-cell recordings over an extended period of time. Of course, the real
world is messier. Given the technology we have today, it would be impossible to
conduct an experiment like ours on human beings. We agree that it would be
impossible to use our technique on biological nervous systems given current technol-
ogy, but we suspect that the technology will someday be available to record the sort
of data that would be necessary for applying our technique to real nervous systems.
In fact, one could apply the technique to the results of fMRI experiments, which
provide a low resolution view of neural activation. In any case, our point does not
depend on the ability to apply the technique in detail to human brains. We have
argued that our technique provides a robust criterion for inter-individual concept
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similarity. The fact that such a criterion exists is theoretically important because it
means that state space semantics cannot be rejected on the grounds that it has no
such criterion. To make this point, it is not necessary for us to provide a method for
evaluating the criterion that is universally and easily applicable. In fact, we have
provided a method that is universally and easily applicable to artificial neural
networks, and we have also argued that it is universally, though not easily, applicable
to biological neural networks.

A second objection is that our technique is not applicable to recurrent networks,
where state is preserved between stimulus presentations. The neural networks in real
brains are far more complex than the simple three-layer feedforward networks used
in the experiments we report here. By using discrete time feedforward networks, we
constrained the systems in our experiments to be passive receptors of their inputs.
It is likely that even humans sitting on a couch watching TV are not such perfectly
passive receptacles. Rather, they bring internal state to the processing of input.
Indeed, this is the point of priming experiments. Recurrence introduces a significant
new level of complexity by allowing the possibility of storing information in the state
of the network that is not directly caused by the current sensory stimulus. In most
recurrent networks (not to mention real nervous systems), it is not reasonable to
assume, as we did in the experiments above, that states caused by identical stimuli
are comparable. Two people watching the same television are likely to be thinking
very different things, but our technique seems to presuppose that they are
thinking the same thing.

Consider what must be done by current imaging experimentalists that use
techniques such as fMRI or PET. They also must deal with the “noise” of different
subjects and different initial states. They approach the problem in two ways. First,
they primarily use subtraction methods. This technique is useful for removing back-
ground processes (such as visual processing) that are not relevant to the variable of
interest. Second, they average over subjects. This approach, of course, presupposes
that the subjects locate their processing in similar places, and then averages out the
differences between subjects. The analyses of variance that are performed then find
sites (voxels, or volume elements) that are significantly more active, on average,
across all subjects. This analysis requires that the variance must be low enough that
it does not overlap much with the variance of other voxels. That such experiments
return relatively consistent results is encouraging for our approach.

Unfortunately, this approach does not directly address our problem, which
involves trying to assess the shape of a particular subject’s representational space and
compare that to another subject’s space. However, it does suggest that the exper-
imental conditions reduce the variance to low enough levels that the effects of
pre-existing internal states in multiple subjects can be averaged out. Our approach
would be to apply the same idea to one subject, averaging across presentations.
Subtraction could be used to directly assess the “distance” between two concepts.
Perhaps less ambitiously, one could average across a concept class, and assess
differences in those. For example, recent experiments have assessed the difference in
representation between action verbs and verbs of propositional attitude, and found
different patterns of activation for the two kinds of verbs (Devita er al., 1999).
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These activations represent a component of the “distance” between the two verb
classes.

A third objection is that our technique may falsely identify two networks’ state
spaces as similar when they are, in fact, representing two entirely different domains,
say, algebra and art history. This could arise if the shape of the internal space is the
same between two domains. But this is exactly why we require presenting identical
stimuli to both networks. It would, of course, be possible to compute matches
between different domains, and this would be an interesting way to search for targets
for analogies.

A fourth objection is that we do not take into consideration the possibility of
thinkers who have different numbers of concepts. Indeed, with our theory or without
it, counting concepts is a difficult business. How many concepts do you have? Is it
the same number as I have? If you have 40 and I have only three, how is it possible
to compare our representational states? We haven’t said much about what concepts
are on our theory, and we don’t feel that we need to in order to make our point. We
have proposed a criterion for similarity of the content of representational states
across individuals that does not depend on individuating concepts. We do, however,
want to say three things about what concepts are #not.

First, concepts are not stimuli. One might assume that we equate concepts with
stimuli on the basis of the fact that we use identical stimuli to match points in the
activation spaces of different networks. However, we do not believe that the stimuli
are the concepts. As we showed above, the representation of the stimulus on the
sensory surface may be poorly correlated with the representational state internal to
the network. We present the same stimuli to our subjects because we believe that
presenting the same stimuli is a good way to elicit activations of the same (or at least
similar) concepts in our subjects. Second, concepts are not “dimensions in state
space,” at least insofar as “dimensions in state space” is taken to refer to the
dimensions the space happens to have (e.g. the number of units in the hidden layer
of a neural network in the case of an activation state space) [2]. In fact, it has been
one of our primary points that networks with different numbers of units (and hence
state spaces with different dimensionalities) can still be meaningfully compared.
Third, concepts are not terms in a language. We did not impose the “same
language” constraint on our networks in order to ensure that they had the
“same concepts.”

Although we used exactly the same output representations in all of our
networks, we might have mixed up the output units in such a way that the networks
all made the same categorizations while using different output units to label them.
Such networks would have spoken “different languages” in the sense that they
would have had different terms for their categories. Nevertheless, they would have
had the same number of categories and would have agreed on which stimuli
belonged to a particular category. Although we did not run such an experiment, we
would not expect it to change our results.

There is also a stronger sense in which our networks might have spoken
“different languages.” There are many psychological results showing that people
categorize the world in very different ways (see Goschke & Koppelberg, 1990, for a
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review) and many philosophical arguments to the effect that figuring out what
someone is saying is at least as hard as figuring out what they are thinking
(e.g. Quine, 1960).

Our networks might have had more or fewer categories (output units) in their
repertoire; some might have been trained to distinguish only two colors, others to
distinguish six or more. If that had been the case, would it have made sense
to compare representational similarity between networks with different numbers of
categories, and what would the results have been? Because we have not yet done the
experiments, we cannot report the results. One can, in any event, use our technique
to compare the representational structure of two such networks, because we can still
present them with the same stimuli. We would hypothesize that the representational
similarity between networks trained on different numbers of color terms would be
rather low, since networks that had to learn more categories would also have to
create more partitions in their hidden unit activation spaces. Hence, we are strong
Whorfians in this sense.

A fifth objection is that we tacitly assume a hopelessly naive form of empiri-
cism—that any concept may be elicited simply by the presentation of some stimulus.
This objection, like the third one, arises from a misinterpretation of the fact that we
match representations according to stimuli in the experiments we report here. Since
we present the same stimuli to each network, it is easy to think that we assume that
a thinker has one concept for each stimulus. However, even the reader who
understands that we do not identify concepts with stimuli might still be puzzled
about how we would measure representations of abstract concepts like love, truth,
beaury and justice. What possible stimulus could reliably elicit a thought employing
such a concept from any subject? We don’t believe that there is any such simple
stimulus (although showing the subjects those words themselves, or sentences that
contain them, would be a good start). Nevertheless, we believe that it is reasonable
to assume that some concepts (color concepts are a good example) are primarily
(though clearly not entirely) perceptual, and that we can get at representations of the
more abstract concepts by using what we know about the representations of more
perceptual concepts as landmarks in the representational space. We can start by
matching such mostly perceptual concepts as best we can across large numbers of
contexts. The structure of higher level, more abstract, less perceptual concepts can
then be explored by locating them relative to the conceptual “landmarks” we have
identified for more perceptual concepts, again across many contexts. By finding
patterns of activation that are not the same as known perceptual representations but
which are in similar relative positions across large numbers of contexts, we can
locate the representations of abstract concepts in activation space. (Which concepts
they are will have to be determined by other means, since we do not purport to have
a means of determining what a person is thinking, only a criterion for when two
people are thinking similar things.) Such representations, although they would be
located relative to more perceptual representations, would not necessarily have
perceptual representations as logical parts or final causes. Our theory is not mere
empiricism, as can be seen from the fact that the metric of content similarity we
advocate can be used to measure similarity of internal representations regardless of
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how inputs are encoded. In fact, as we have demonstrated empirically, it is even
possible for systems with very dissimilar input representations to have internal
representations that are more similar than their inputs.

The mention of similarity in the previous paragraph raises a final issue we must
address. Fodor and Lepore’s challenge to state space semantics was to provide a
criterion for content identity. Although we have given a criterion of content identity
(perfect correlation), our experiments as well as our intuitions tell us that it will be
met only very rarely. Is our theory, which depends in most cases on similarity, not
identity, good enough to meet the objection? We think it is. Fodor and Lepore are,
we feel, unduly concerned with the identity of concepts:

clearly a necessary condition for the identity of state spaces is the identity
of their dimensions; specifically, identity of their semantic dimensions,
since the current proposal is that concepts be located by reference to a
space of semantically relevant properties. (Fodor & Lepore, 1996a, p. 152)

We have shown that it is possible to compare state spaces of arbitrarily differing
dimensions, as long as we are willing to be satisfied by a measure that reaches
identity only in the limit. Contra Fodor and Lepore, we are not “faced with the
question when x and y are the same semantic dimensions” (p. 152). The question
simply does not arise, because we are not comparing similarity along dimensions.
Instead, we are comparing relative distance between activations, and distance can be
computed in any number of dimensions.
Fodor and Lepore anticipate this kind of argument. They write:

Perhaps it will be replied that semantic similarity doesn’t, after all, require
concepts to be adjacent in the very same state space; perhaps occupying
corresponding positions in similar state spaces will do. That a regress has
now appeared is, we trust, entirely obvious. (p. 152)

In our view, semantic similarity does nor consist in concepts occupying similar
relative positions in identical state spaces. Moreover, neither does semantic similarity
consist in concepts occupying similar relative locations in similar state spaces.
Rather, semantic inter-individual concept similarity consists in concepts occupying
similar relative locations in the state spaces of the two individuals, however similar
or different those state spaces may be. Our measure of content similarity is robust
and well defined for any state space. The question of state space similarity does not
arise. Hence, there is no issue of a regress.

Conclusions

Our goal here has not been to defend a particular theory of what semantic content
is or how it is determined. Rather, we have defended connectionism in general, and
state space semantics in particular, against the charge that they are incompatible
with any theory of content because they preclude the very possibility of determining
identity of content across individuals. In response to Fodor and Lepore’s challenge
to state space semantics, we have argued that representational similarity can be
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measured by correlation between inter-point distances in any two activation state
spaces. Thus, we have shown that state space semantics does have a way of
measuring similarity of content (and, in the limit at least, identity of content). It can
be used to measure similarity of internal representations regardless of how inputs are
encoded and regardless of number of hidden units or neurons a network might have.
Furthermore, we have shown empirically that the measure of content similarity we
advocate for state space semantics is robust under several conditions, by using it to
demonstrate that different individuals, even individuals with different “sensory
organs” and different numbers of neurons, may represent the world in similar ways.

Notes

[1] We use Euclidean distance, but it would be possible to use other distance measures.

[2] It may happen that for a particular individual, a concept happens to “line up” with a state space
dimension. This is a localist representation of that concept. However, our measure is not sensitive
to the distinction between localist and distributed representations, nor does it need to be.
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